Metamath Proof Explorer


Theorem eqelsuc

Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypothesis eqelsuc.1 A V
Assertion eqelsuc A = B A suc B

Proof

Step Hyp Ref Expression
1 eqelsuc.1 A V
2 1 sucid A suc A
3 suceq A = B suc A = suc B
4 2 3 eleqtrid A = B A suc B