Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
eqelsuc
Next ⟩
iunsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqelsuc
Description:
A set belongs to the successor of an equal set.
(Contributed by
NM
, 18-Aug-1994)
Ref
Expression
Hypothesis
eqelsuc.1
⊢
A
∈
V
Assertion
eqelsuc
⊢
A
=
B
→
A
∈
suc
⁡
B
Proof
Step
Hyp
Ref
Expression
1
eqelsuc.1
⊢
A
∈
V
2
1
sucid
⊢
A
∈
suc
⁡
A
3
suceq
⊢
A
=
B
→
suc
⁡
A
=
suc
⁡
B
4
2
3
eleqtrid
⊢
A
=
B
→
A
∈
suc
⁡
B