Metamath Proof Explorer


Theorem eqeltrd

Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses eqeltrd.1 φ A = B
eqeltrd.2 φ B C
Assertion eqeltrd φ A C

Proof

Step Hyp Ref Expression
1 eqeltrd.1 φ A = B
2 eqeltrd.2 φ B C
3 1 eleq1d φ A C B C
4 2 3 mpbird φ A C