Metamath Proof Explorer


Theorem eqeltrrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrdi.1 φB=A
eqeltrrdi.2 BC
Assertion eqeltrrdi φAC

Proof

Step Hyp Ref Expression
1 eqeltrrdi.1 φB=A
2 eqeltrrdi.2 BC
3 1 eqcomd φA=B
4 3 2 eqeltrdi φAC