Metamath Proof Explorer


Theorem eqeltrri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltrri.1 A = B
eqeltrri.2 A C
Assertion eqeltrri B C

Proof

Step Hyp Ref Expression
1 eqeltrri.1 A = B
2 eqeltrri.2 A C
3 1 eqcomi B = A
4 3 2 eqeltri B C