Metamath Proof Explorer


Theorem eqeltrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrid.1 B = A
eqeltrrid.2 φ B C
Assertion eqeltrrid φ A C

Proof

Step Hyp Ref Expression
1 eqeltrrid.1 B = A
2 eqeltrrid.2 φ B C
3 1 eqcomi A = B
4 3 2 eqeltrid φ A C