Metamath Proof Explorer


Theorem eqeu

Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009)

Ref Expression
Hypothesis eqeu.1 x = A φ ψ
Assertion eqeu A B ψ x φ x = A ∃! x φ

Proof

Step Hyp Ref Expression
1 eqeu.1 x = A φ ψ
2 1 spcegv A B ψ x φ
3 2 imp A B ψ x φ
4 3 3adant3 A B ψ x φ x = A x φ
5 eqeq2 y = A x = y x = A
6 5 imbi2d y = A φ x = y φ x = A
7 6 albidv y = A x φ x = y x φ x = A
8 7 spcegv A B x φ x = A y x φ x = y
9 8 imp A B x φ x = A y x φ x = y
10 9 3adant2 A B ψ x φ x = A y x φ x = y
11 eu3v ∃! x φ x φ y x φ x = y
12 4 10 11 sylanbrc A B ψ x φ x = A ∃! x φ