Metamath Proof Explorer


Theorem eqeuel

Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion eqeuel A x y x A y A x = y ∃! x x A

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 1 biimpi A x x A
3 2 anim1i A x y x A y A x = y x x A x y x A y A x = y
4 eleq1w x = y x A y A
5 4 eu4 ∃! x x A x x A x y x A y A x = y
6 3 5 sylibr A x y x A y A x = y ∃! x x A