Metamath Proof Explorer


Theorem eqfnov

Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion eqfnov F Fn A × B G Fn C × D F = G A × B = C × D x A y B x F y = x G y

Proof

Step Hyp Ref Expression
1 eqfnfv2 F Fn A × B G Fn C × D F = G A × B = C × D z A × B F z = G z
2 fveq2 z = x y F z = F x y
3 fveq2 z = x y G z = G x y
4 2 3 eqeq12d z = x y F z = G z F x y = G x y
5 df-ov x F y = F x y
6 df-ov x G y = G x y
7 5 6 eqeq12i x F y = x G y F x y = G x y
8 4 7 bitr4di z = x y F z = G z x F y = x G y
9 8 ralxp z A × B F z = G z x A y B x F y = x G y
10 9 anbi2i A × B = C × D z A × B F z = G z A × B = C × D x A y B x F y = x G y
11 1 10 bitrdi F Fn A × B G Fn C × D F = G A × B = C × D x A y B x F y = x G y