Step |
Hyp |
Ref |
Expression |
1 |
|
eqger.x |
|
2 |
|
eqger.r |
|
3 |
2
|
releqg |
|
4 |
3
|
a1i |
|
5 |
|
subgrcl |
|
6 |
1
|
subgss |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 7 8 2
|
eqgval |
|
10 |
5 6 9
|
syl2anc |
|
11 |
10
|
biimpa |
|
12 |
11
|
simp2d |
|
13 |
11
|
simp1d |
|
14 |
5
|
adantr |
|
15 |
1 7
|
grpinvcl |
|
16 |
14 13 15
|
syl2anc |
|
17 |
1 8 7
|
grpinvadd |
|
18 |
14 16 12 17
|
syl3anc |
|
19 |
1 7
|
grpinvinv |
|
20 |
14 13 19
|
syl2anc |
|
21 |
20
|
oveq2d |
|
22 |
18 21
|
eqtrd |
|
23 |
11
|
simp3d |
|
24 |
7
|
subginvcl |
|
25 |
23 24
|
syldan |
|
26 |
22 25
|
eqeltrrd |
|
27 |
6
|
adantr |
|
28 |
1 7 8 2
|
eqgval |
|
29 |
14 27 28
|
syl2anc |
|
30 |
12 13 26 29
|
mpbir3and |
|
31 |
13
|
adantrr |
|
32 |
1 7 8 2
|
eqgval |
|
33 |
5 6 32
|
syl2anc |
|
34 |
33
|
biimpa |
|
35 |
34
|
adantrl |
|
36 |
35
|
simp2d |
|
37 |
5
|
adantr |
|
38 |
37 31 15
|
syl2anc |
|
39 |
12
|
adantrr |
|
40 |
1 7
|
grpinvcl |
|
41 |
37 39 40
|
syl2anc |
|
42 |
1 8
|
grpcl |
|
43 |
37 41 36 42
|
syl3anc |
|
44 |
1 8
|
grpass |
|
45 |
37 38 39 43 44
|
syl13anc |
|
46 |
|
eqid |
|
47 |
1 8 46 7
|
grprinv |
|
48 |
37 39 47
|
syl2anc |
|
49 |
48
|
oveq1d |
|
50 |
1 8
|
grpass |
|
51 |
37 39 41 36 50
|
syl13anc |
|
52 |
1 8 46
|
grplid |
|
53 |
37 36 52
|
syl2anc |
|
54 |
49 51 53
|
3eqtr3d |
|
55 |
54
|
oveq2d |
|
56 |
45 55
|
eqtrd |
|
57 |
|
simpl |
|
58 |
23
|
adantrr |
|
59 |
35
|
simp3d |
|
60 |
8
|
subgcl |
|
61 |
57 58 59 60
|
syl3anc |
|
62 |
56 61
|
eqeltrrd |
|
63 |
6
|
adantr |
|
64 |
1 7 8 2
|
eqgval |
|
65 |
37 63 64
|
syl2anc |
|
66 |
31 36 62 65
|
mpbir3and |
|
67 |
1 8 46 7
|
grplinv |
|
68 |
5 67
|
sylan |
|
69 |
46
|
subg0cl |
|
70 |
69
|
adantr |
|
71 |
68 70
|
eqeltrd |
|
72 |
71
|
ex |
|
73 |
72
|
pm4.71rd |
|
74 |
1 7 8 2
|
eqgval |
|
75 |
5 6 74
|
syl2anc |
|
76 |
|
df-3an |
|
77 |
|
anidm |
|
78 |
77
|
anbi2ci |
|
79 |
76 78
|
bitri |
|
80 |
75 79
|
bitrdi |
|
81 |
73 80
|
bitr4d |
|
82 |
4 30 66 81
|
iserd |
|