Step |
Hyp |
Ref |
Expression |
1 |
|
eqger.x |
|
2 |
|
eqger.r |
|
3 |
2
|
releqg |
|
4 |
3
|
a1i |
|
5 |
|
subgrcl |
|
6 |
1
|
subgss |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 7 8 2
|
eqgval |
|
10 |
5 6 9
|
syl2anc |
|
11 |
10
|
biimpa |
|
12 |
11
|
simp2d |
|
13 |
11
|
simp1d |
|
14 |
5
|
adantr |
|
15 |
1 7 14 13
|
grpinvcld |
|
16 |
1 8 7
|
grpinvadd |
|
17 |
14 15 12 16
|
syl3anc |
|
18 |
1 7
|
grpinvinv |
|
19 |
14 13 18
|
syl2anc |
|
20 |
19
|
oveq2d |
|
21 |
17 20
|
eqtrd |
|
22 |
11
|
simp3d |
|
23 |
7
|
subginvcl |
|
24 |
22 23
|
syldan |
|
25 |
21 24
|
eqeltrrd |
|
26 |
6
|
adantr |
|
27 |
1 7 8 2
|
eqgval |
|
28 |
14 26 27
|
syl2anc |
|
29 |
12 13 25 28
|
mpbir3and |
|
30 |
13
|
adantrr |
|
31 |
1 7 8 2
|
eqgval |
|
32 |
5 6 31
|
syl2anc |
|
33 |
32
|
biimpa |
|
34 |
33
|
adantrl |
|
35 |
34
|
simp2d |
|
36 |
5
|
adantr |
|
37 |
1 7 36 30
|
grpinvcld |
|
38 |
12
|
adantrr |
|
39 |
1 7 36 38
|
grpinvcld |
|
40 |
1 8 36 39 35
|
grpcld |
|
41 |
1 8 36 37 38 40
|
grpassd |
|
42 |
|
eqid |
|
43 |
1 8 42 7
|
grprinv |
|
44 |
36 38 43
|
syl2anc |
|
45 |
44
|
oveq1d |
|
46 |
1 8 36 38 39 35
|
grpassd |
|
47 |
1 8 42 36 35
|
grplidd |
|
48 |
45 46 47
|
3eqtr3d |
|
49 |
48
|
oveq2d |
|
50 |
41 49
|
eqtrd |
|
51 |
|
simpl |
|
52 |
22
|
adantrr |
|
53 |
34
|
simp3d |
|
54 |
8
|
subgcl |
|
55 |
51 52 53 54
|
syl3anc |
|
56 |
50 55
|
eqeltrrd |
|
57 |
6
|
adantr |
|
58 |
1 7 8 2
|
eqgval |
|
59 |
36 57 58
|
syl2anc |
|
60 |
30 35 56 59
|
mpbir3and |
|
61 |
1 8 42 7
|
grplinv |
|
62 |
5 61
|
sylan |
|
63 |
42
|
subg0cl |
|
64 |
63
|
adantr |
|
65 |
62 64
|
eqeltrd |
|
66 |
65
|
ex |
|
67 |
66
|
pm4.71rd |
|
68 |
1 7 8 2
|
eqgval |
|
69 |
5 6 68
|
syl2anc |
|
70 |
|
df-3an |
|
71 |
|
anidm |
|
72 |
71
|
anbi2ci |
|
73 |
70 72
|
bitri |
|
74 |
69 73
|
bitrdi |
|
75 |
67 74
|
bitr4d |
|
76 |
4 29 60 75
|
iserd |
|