Metamath Proof Explorer


Theorem eqglact

Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x X = Base G
eqger.r ˙ = G ~ QG Y
eqglact.3 + ˙ = + G
Assertion eqglact G Grp Y X A X A ˙ = x X A + ˙ x Y

Proof

Step Hyp Ref Expression
1 eqger.x X = Base G
2 eqger.r ˙ = G ~ QG Y
3 eqglact.3 + ˙ = + G
4 eqid inv g G = inv g G
5 1 4 3 2 eqgval G Grp Y X A ˙ x A X x X inv g G A + ˙ x Y
6 3anass A X x X inv g G A + ˙ x Y A X x X inv g G A + ˙ x Y
7 5 6 bitrdi G Grp Y X A ˙ x A X x X inv g G A + ˙ x Y
8 7 baibd G Grp Y X A X A ˙ x x X inv g G A + ˙ x Y
9 8 3impa G Grp Y X A X A ˙ x x X inv g G A + ˙ x Y
10 9 abbidv G Grp Y X A X x | A ˙ x = x | x X inv g G A + ˙ x Y
11 dfec2 A X A ˙ = x | A ˙ x
12 11 3ad2ant3 G Grp Y X A X A ˙ = x | A ˙ x
13 eqid g X x X g + ˙ x = g X x X g + ˙ x
14 13 1 3 4 grplactcnv G Grp A X g X x X g + ˙ x A : X 1-1 onto X g X x X g + ˙ x A -1 = g X x X g + ˙ x inv g G A
15 14 simprd G Grp A X g X x X g + ˙ x A -1 = g X x X g + ˙ x inv g G A
16 13 1 grplactfval A X g X x X g + ˙ x A = x X A + ˙ x
17 16 adantl G Grp A X g X x X g + ˙ x A = x X A + ˙ x
18 17 cnveqd G Grp A X g X x X g + ˙ x A -1 = x X A + ˙ x -1
19 1 4 grpinvcl G Grp A X inv g G A X
20 13 1 grplactfval inv g G A X g X x X g + ˙ x inv g G A = x X inv g G A + ˙ x
21 19 20 syl G Grp A X g X x X g + ˙ x inv g G A = x X inv g G A + ˙ x
22 15 18 21 3eqtr3d G Grp A X x X A + ˙ x -1 = x X inv g G A + ˙ x
23 22 cnveqd G Grp A X x X A + ˙ x -1 -1 = x X inv g G A + ˙ x -1
24 23 3adant2 G Grp Y X A X x X A + ˙ x -1 -1 = x X inv g G A + ˙ x -1
25 24 imaeq1d G Grp Y X A X x X A + ˙ x -1 -1 Y = x X inv g G A + ˙ x -1 Y
26 imacnvcnv x X A + ˙ x -1 -1 Y = x X A + ˙ x Y
27 eqid x X inv g G A + ˙ x = x X inv g G A + ˙ x
28 27 mptpreima x X inv g G A + ˙ x -1 Y = x X | inv g G A + ˙ x Y
29 df-rab x X | inv g G A + ˙ x Y = x | x X inv g G A + ˙ x Y
30 28 29 eqtri x X inv g G A + ˙ x -1 Y = x | x X inv g G A + ˙ x Y
31 25 26 30 3eqtr3g G Grp Y X A X x X A + ˙ x Y = x | x X inv g G A + ˙ x Y
32 10 12 31 3eqtr4d G Grp Y X A X A ˙ = x X A + ˙ x Y