Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
eqif
Next ⟩
ifval
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqif
Description:
Expansion of an equality with a conditional operator.
(Contributed by
NM
, 14-Feb-2005)
Ref
Expression
Assertion
eqif
⊢
A
=
if
φ
B
C
↔
φ
∧
A
=
B
∨
¬
φ
∧
A
=
C
Proof
Step
Hyp
Ref
Expression
1
eqeq2
⊢
if
φ
B
C
=
B
→
A
=
if
φ
B
C
↔
A
=
B
2
eqeq2
⊢
if
φ
B
C
=
C
→
A
=
if
φ
B
C
↔
A
=
C
3
1
2
elimif
⊢
A
=
if
φ
B
C
↔
φ
∧
A
=
B
∨
¬
φ
∧
A
=
C