Metamath Proof Explorer


Theorem eqif

Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005)

Ref Expression
Assertion eqif A = if φ B C φ A = B ¬ φ A = C

Proof

Step Hyp Ref Expression
1 eqeq2 if φ B C = B A = if φ B C A = B
2 eqeq2 if φ B C = C A = if φ B C A = C
3 1 2 elimif A = if φ B C φ A = B ¬ φ A = C