Metamath Proof Explorer


Theorem eqle

Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion eqle A A = B A B

Proof

Step Hyp Ref Expression
1 leid A A A
2 breq2 A = B A A A B
3 2 biimpac A A A = B A B
4 1 3 sylan A A = B A B