Metamath Proof Explorer


Theorem eqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eqled.1 φ A
eqled.2 φ A = B
Assertion eqled φ A B

Proof

Step Hyp Ref Expression
1 eqled.1 φ A
2 eqled.2 φ A = B
3 eqle A A = B A B
4 1 2 3 syl2anc φ A B