Metamath Proof Explorer
Description: Equality implies 'less than or equal to'. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eqled.1 |
|
|
|
eqled.2 |
|
|
Assertion |
eqled |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqled.1 |
|
2 |
|
eqled.2 |
|
3 |
|
eqle |
|
4 |
1 2 3
|
syl2anc |
|