Metamath Proof Explorer


Theorem eqlei

Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999) (Revised by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 A
Assertion eqlei A = B A B

Proof

Step Hyp Ref Expression
1 lt.1 A
2 eleq1a A B = A B
3 1 2 ax-mp B = A B
4 3 eqcoms A = B B
5 letri3 A B A = B A B B A
6 1 5 mpan B A = B A B B A
7 simpl A B B A A B
8 6 7 syl6bi B A = B A B
9 4 8 mpcom A = B A B