Metamath Proof Explorer


Theorem eqlei2

Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 A
Assertion eqlei2 B = A B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 eleq1a A B = A B
3 1 2 ax-mp B = A B
4 eqcom B = A A = B
5 letri3 A B A = B A B B A
6 1 5 mpan B A = B A B B A
7 4 6 syl5bb B B = A A B B A
8 simpr A B B A B A
9 7 8 syl6bi B B = A B A
10 3 9 mpcom B = A B A