Metamath Proof Explorer
Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
Assertion |
eqleltd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
|
2 |
|
ltd.2 |
|
3 |
|
eqlelt |
|
4 |
1 2 3
|
syl2anc |
|