Metamath Proof Explorer
Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
Assertion |
eqleltd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltd.1 |
|
| 2 |
|
ltd.2 |
|
| 3 |
|
eqlelt |
|
| 4 |
1 2 3
|
syl2anc |
|