Metamath Proof Explorer


Theorem eqleltd

Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion eqleltd φ A = B A B ¬ A < B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 eqlelt A B A = B A B ¬ A < B
4 1 2 3 syl2anc φ A = B A B ¬ A < B