Metamath Proof Explorer


Theorem eqmat

Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019)

Ref Expression
Hypotheses eqmat.a A = N Mat R
eqmat.b B = Base A
Assertion eqmat X B Y B X = Y i N j N i X j = i Y j

Proof

Step Hyp Ref Expression
1 eqmat.a A = N Mat R
2 eqmat.b B = Base A
3 eqid Base R = Base R
4 1 3 2 matbas2i X B X Base R N × N
5 elmapfn X Base R N × N X Fn N × N
6 4 5 syl X B X Fn N × N
7 1 3 2 matbas2i Y B Y Base R N × N
8 elmapfn Y Base R N × N Y Fn N × N
9 7 8 syl Y B Y Fn N × N
10 eqfnov2 X Fn N × N Y Fn N × N X = Y i N j N i X j = i Y j
11 6 9 10 syl2an X B Y B X = Y i N j N i X j = i Y j