Metamath Proof Explorer


Theorem eqnegad

Description: If a complex number equals its own negative, it is zero. One-way deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses eqnegad.1 φ A
eqnegad.2 φ A = A
Assertion eqnegad φ A = 0

Proof

Step Hyp Ref Expression
1 eqnegad.1 φ A
2 eqnegad.2 φ A = A
3 1 eqnegd φ A = A A = 0
4 2 3 mpbid φ A = 0