Metamath Proof Explorer


Theorem eqneltrrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)

Ref Expression
Hypotheses eqneltrrd.1 φ A = B
eqneltrrd.2 φ ¬ A C
Assertion eqneltrrd φ ¬ B C

Proof

Step Hyp Ref Expression
1 eqneltrrd.1 φ A = B
2 eqneltrrd.2 φ ¬ A C
3 1 eqcomd φ B = A
4 3 2 eqneltrd φ ¬ B C