Metamath Proof Explorer


Theorem eqnetrri

Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses eqnetrr.1 A = B
eqnetrr.2 A C
Assertion eqnetrri B C

Proof

Step Hyp Ref Expression
1 eqnetrr.1 A = B
2 eqnetrr.2 A C
3 1 eqcomi B = A
4 3 2 eqnetri B C