Metamath Proof Explorer


Theorem eqnetrrid

Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012) (Proof shortened by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypotheses eqnetrrid.1 B = A
eqnetrrid.2 φ B C
Assertion eqnetrrid φ A C

Proof

Step Hyp Ref Expression
1 eqnetrrid.1 B = A
2 eqnetrrid.2 φ B C
3 1 a1i φ B = A
4 3 2 eqnetrrd φ A C