Metamath Proof Explorer


Theorem eqop2

Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses eqop2.1 B V
eqop2.2 C V
Assertion eqop2 A = B C A V × V 1 st A = B 2 nd A = C

Proof

Step Hyp Ref Expression
1 eqop2.1 B V
2 eqop2.2 C V
3 1 2 opelvv B C V × V
4 eleq1 A = B C A V × V B C V × V
5 3 4 mpbiri A = B C A V × V
6 eqop A V × V A = B C 1 st A = B 2 nd A = C
7 5 6 biadanii A = B C A V × V 1 st A = B 2 nd A = C