Metamath Proof Explorer


Theorem eqord2

Description: A strictly decreasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x=yA=B
ltord.2 x=CA=M
ltord.3 x=DA=N
ltord.4 S
ltord.5 φxSA
ltord2.6 φxSySx<yB<A
Assertion eqord2 φCSDSC=DM=N

Proof

Step Hyp Ref Expression
1 ltord.1 x=yA=B
2 ltord.2 x=CA=M
3 ltord.3 x=DA=N
4 ltord.4 S
5 ltord.5 φxSA
6 ltord2.6 φxSySx<yB<A
7 1 negeqd x=yA=B
8 2 negeqd x=CA=M
9 3 negeqd x=DA=N
10 5 renegcld φxSA
11 5 ralrimiva φxSA
12 1 eleq1d x=yAB
13 12 rspccva xSAySB
14 11 13 sylan φySB
15 14 adantrl φxSySB
16 5 adantrr φxSySA
17 ltneg BAB<AA<B
18 15 16 17 syl2anc φxSySB<AA<B
19 6 18 sylibd φxSySx<yA<B
20 7 8 9 4 10 19 eqord1 φCSDSC=DM=N
21 2 eleq1d x=CAM
22 21 rspccva xSACSM
23 11 22 sylan φCSM
24 23 adantrr φCSDSM
25 24 recnd φCSDSM
26 3 eleq1d x=DAN
27 26 rspccva xSADSN
28 11 27 sylan φDSN
29 28 adantrl φCSDSN
30 29 recnd φCSDSN
31 25 30 neg11ad φCSDSM=NM=N
32 20 31 bitrd φCSDSC=DM=N