Metamath Proof Explorer


Theorem eqord2

Description: A strictly decreasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x = y A = B
ltord.2 x = C A = M
ltord.3 x = D A = N
ltord.4 S
ltord.5 φ x S A
ltord2.6 φ x S y S x < y B < A
Assertion eqord2 φ C S D S C = D M = N

Proof

Step Hyp Ref Expression
1 ltord.1 x = y A = B
2 ltord.2 x = C A = M
3 ltord.3 x = D A = N
4 ltord.4 S
5 ltord.5 φ x S A
6 ltord2.6 φ x S y S x < y B < A
7 1 negeqd x = y A = B
8 2 negeqd x = C A = M
9 3 negeqd x = D A = N
10 5 renegcld φ x S A
11 5 ralrimiva φ x S A
12 1 eleq1d x = y A B
13 12 rspccva x S A y S B
14 11 13 sylan φ y S B
15 14 adantrl φ x S y S B
16 5 adantrr φ x S y S A
17 ltneg B A B < A A < B
18 15 16 17 syl2anc φ x S y S B < A A < B
19 6 18 sylibd φ x S y S x < y A < B
20 7 8 9 4 10 19 eqord1 φ C S D S C = D M = N
21 2 eleq1d x = C A M
22 21 rspccva x S A C S M
23 11 22 sylan φ C S M
24 23 adantrr φ C S D S M
25 24 recnd φ C S D S M
26 3 eleq1d x = D A N
27 26 rspccva x S A D S N
28 11 27 sylan φ D S N
29 28 adantrl φ C S D S N
30 29 recnd φ C S D S N
31 25 30 neg11ad φ C S D S M = N M = N
32 20 31 bitrd φ C S D S C = D M = N