Metamath Proof Explorer


Theorem eqoreldif

Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion eqoreldif B C A C A = B A C B

Proof

Step Hyp Ref Expression
1 simpl A C ¬ A = B A C
2 elsni A B A = B
3 2 con3i ¬ A = B ¬ A B
4 3 adantl A C ¬ A = B ¬ A B
5 1 4 eldifd A C ¬ A = B A C B
6 5 ex A C ¬ A = B A C B
7 6 orrd A C A = B A C B
8 eleq1a B C A = B A C
9 eldifi A C B A C
10 9 a1i B C A C B A C
11 8 10 jaod B C A = B A C B A C
12 7 11 impbid2 B C A C A = B A C B