Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
eqrd
Metamath Proof Explorer
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux , 21-Mar-2017) (Proof shortened by BJ , 1-Dec-2021)
Ref
Expression
Hypotheses
eqrd.0
⊢ Ⅎ x φ
eqrd.1
⊢ Ⅎ _ x A
eqrd.2
⊢ Ⅎ _ x B
eqrd.3
⊢ φ → x ∈ A ↔ x ∈ B
Assertion
eqrd
⊢ φ → A = B
Proof
Step
Hyp
Ref
Expression
1
eqrd.0
⊢ Ⅎ x φ
2
eqrd.1
⊢ Ⅎ _ x A
3
eqrd.2
⊢ Ⅎ _ x B
4
eqrd.3
⊢ φ → x ∈ A ↔ x ∈ B
5
1 4
alrimi
⊢ φ → ∀ x x ∈ A ↔ x ∈ B
6
2 3
cleqf
⊢ A = B ↔ ∀ x x ∈ A ↔ x ∈ B
7
5 6
sylibr
⊢ φ → A = B