Metamath Proof Explorer


Theorem eqrd

Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017) (Proof shortened by BJ, 1-Dec-2021)

Ref Expression
Hypotheses eqrd.0 x φ
eqrd.1 _ x A
eqrd.2 _ x B
eqrd.3 φ x A x B
Assertion eqrd φ A = B

Proof

Step Hyp Ref Expression
1 eqrd.0 x φ
2 eqrd.1 _ x A
3 eqrd.2 _ x B
4 eqrd.3 φ x A x B
5 1 4 alrimi φ x x A x B
6 2 3 cleqf A = B x x A x B
7 5 6 sylibr φ A = B