Metamath Proof Explorer


Theorem eqrdav

Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008) (Proof shortened by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypotheses eqrdav.1 φ x A x C
eqrdav.2 φ x B x C
eqrdav.3 φ x C x A x B
Assertion eqrdav φ A = B

Proof

Step Hyp Ref Expression
1 eqrdav.1 φ x A x C
2 eqrdav.2 φ x B x C
3 eqrdav.3 φ x C x A x B
4 3 biimpd φ x C x A x B
5 4 impancom φ x A x C x B
6 1 5 mpd φ x A x B
7 3 biimprd φ x C x B x A
8 7 impancom φ x B x C x A
9 2 8 mpd φ x B x A
10 6 9 impbida φ x A x B
11 10 eqrdv φ A = B