Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eqrelriv
Next ⟩
eqrelriiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqrelriv
Description:
Inference from extensionality principle for relations.
(Contributed by
FL
, 15-Oct-2012)
Ref
Expression
Hypothesis
eqrelriv.1
⊢
x
y
∈
A
↔
x
y
∈
B
Assertion
eqrelriv
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
Proof
Step
Hyp
Ref
Expression
1
eqrelriv.1
⊢
x
y
∈
A
↔
x
y
∈
B
2
1
gen2
⊢
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
3
eqrel
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
4
2
3
mpbiri
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B