Metamath Proof Explorer


Theorem eqrelriv

Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)

Ref Expression
Hypothesis eqrelriv.1 x y A x y B
Assertion eqrelriv Rel A Rel B A = B

Proof

Step Hyp Ref Expression
1 eqrelriv.1 x y A x y B
2 1 gen2 x y x y A x y B
3 eqrel Rel A Rel B A = B x y x y A x y B
4 2 3 mpbiri Rel A Rel B A = B