Metamath Proof Explorer


Theorem eqresfnbd

Description: Property of being the restriction of a function. Note that this is closer to funssres than fnssres . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses eqresfnbd.g φ F Fn B
eqresfnbd.1 φ A B
Assertion eqresfnbd φ R = F A R Fn A R F

Proof

Step Hyp Ref Expression
1 eqresfnbd.g φ F Fn B
2 eqresfnbd.1 φ A B
3 1 2 fnssresd φ F A Fn A
4 resss F A F
5 3 4 jctir φ F A Fn A F A F
6 fneq1 R = F A R Fn A F A Fn A
7 sseq1 R = F A R F F A F
8 6 7 anbi12d R = F A R Fn A R F F A Fn A F A F
9 5 8 syl5ibrcom φ R = F A R Fn A R F
10 1 fnfund φ Fun F
11 10 adantr φ R Fn A Fun F
12 funssres Fun F R F F dom R = R
13 12 eqcomd Fun F R F R = F dom R
14 fndm R Fn A dom R = A
15 14 adantl φ R Fn A dom R = A
16 15 reseq2d φ R Fn A F dom R = F A
17 16 eqeq2d φ R Fn A R = F dom R R = F A
18 13 17 imbitrid φ R Fn A Fun F R F R = F A
19 11 18 mpand φ R Fn A R F R = F A
20 19 expimpd φ R Fn A R F R = F A
21 9 20 impbid φ R = F A R Fn A R F