Metamath Proof Explorer


Theorem eqreu

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypothesis eqreu.1 x = B φ ψ
Assertion eqreu B A ψ x A φ x = B ∃! x A φ

Proof

Step Hyp Ref Expression
1 eqreu.1 x = B φ ψ
2 ralbiim x A φ x = B x A φ x = B x A x = B φ
3 1 ceqsralv B A x A x = B φ ψ
4 3 anbi2d B A x A φ x = B x A x = B φ x A φ x = B ψ
5 2 4 syl5bb B A x A φ x = B x A φ x = B ψ
6 reu6i B A x A φ x = B ∃! x A φ
7 6 ex B A x A φ x = B ∃! x A φ
8 5 7 sylbird B A x A φ x = B ψ ∃! x A φ
9 8 3impib B A x A φ x = B ψ ∃! x A φ
10 9 3com23 B A ψ x A φ x = B ∃! x A φ