Metamath Proof Explorer


Theorem eqreznegel

Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion eqreznegel A z | z A = z | z A

Proof

Step Hyp Ref Expression
1 ssel A w A w
2 recn w w
3 negid w w + w = 0
4 0z 0
5 3 4 eqeltrdi w w + w
6 5 pm4.71i w w w + w
7 zrevaddcl w w w + w w
8 6 7 syl5bb w w w
9 2 8 syl5ib w w w
10 1 9 syl6 A w A w w
11 10 impcomd A w w A w
12 simpr w w A w A
13 11 12 jca2 A w w A w w A
14 zre w w
15 14 anim1i w w A w w A
16 13 15 impbid1 A w w A w w A
17 negeq z = w z = w
18 17 eleq1d z = w z A w A
19 18 elrab w z | z A w w A
20 18 elrab w z | z A w w A
21 16 19 20 3bitr4g A w z | z A w z | z A
22 21 eqrdv A z | z A = z | z A