Metamath Proof Explorer


Theorem eqri

Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)

Ref Expression
Hypotheses eqri.1 _ x A
eqri.2 _ x B
eqri.3 x A x B
Assertion eqri A = B

Proof

Step Hyp Ref Expression
1 eqri.1 _ x A
2 eqri.2 _ x B
3 eqri.3 x A x B
4 nftru x
5 3 a1i x A x B
6 4 1 2 5 eqrd A = B
7 6 mptru A = B