Metamath Proof Explorer


Theorem eqrrabd

Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Hypotheses eqrrabd.1 φ B A
eqrrabd.2 φ x A x B ψ
Assertion eqrrabd φ B = x A | ψ

Proof

Step Hyp Ref Expression
1 eqrrabd.1 φ B A
2 eqrrabd.2 φ x A x B ψ
3 nfv x φ
4 nfcv _ x B
5 nfrab1 _ x x A | ψ
6 1 sseld φ x B x A
7 6 pm4.71rd φ x B x A x B
8 2 pm5.32da φ x A x B x A ψ
9 7 8 bitrd φ x B x A ψ
10 rabid x x A | ψ x A ψ
11 9 10 bitr4di φ x B x x A | ψ
12 3 4 5 11 eqrd φ B = x A | ψ