Metamath Proof Explorer


Theorem eqsbc1

Description: Substitution for the left-hand side in an equality. Class version of eqsb1 . (Contributed by Andrew Salmon, 29-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Assertion eqsbc1 A V [˙A / x]˙ x = B A = B

Proof

Step Hyp Ref Expression
1 dfsbcq y = A [˙y / x]˙ x = B [˙A / x]˙ x = B
2 eqeq1 y = A y = B A = B
3 sbsbc y x x = B [˙y / x]˙ x = B
4 eqsb1 y x x = B y = B
5 3 4 bitr3i [˙y / x]˙ x = B y = B
6 1 2 5 vtoclbg A V [˙A / x]˙ x = B A = B