Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | ||
2 | biorf | ||
3 | 1 2 | sylbi | |
4 | dfss3 | ||
5 | sssn | ||
6 | velsn | ||
7 | 6 | ralbii | |
8 | 4 5 7 | 3bitr3i | |
9 | 3 8 | bitrdi |