Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023) (Proof shortened by SN, 3-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsnd.1 | ||
| eqsnd.2 | |||
| Assertion | eqsnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsnd.1 | ||
| 2 | eqsnd.2 | ||
| 3 | 1 | ralrimiva | |
| 4 | 2 | ne0d | |
| 5 | eqsn | ||
| 6 | 4 5 | syl | |
| 7 | 3 6 | mpbird |