Step |
Hyp |
Ref |
Expression |
1 |
|
eqsqrtd.1 |
|
2 |
|
eqsqrtd.2 |
|
3 |
|
eqsqrtd.3 |
|
4 |
|
eqsqrtd.4 |
|
5 |
|
eqsqrtd.5 |
|
6 |
|
sqreu |
|
7 |
|
reurmo |
|
8 |
2 6 7
|
3syl |
|
9 |
|
df-nel |
|
10 |
5 9
|
sylibr |
|
11 |
3 4 10
|
3jca |
|
12 |
|
sqrtcl |
|
13 |
2 12
|
syl |
|
14 |
|
sqrtthlem |
|
15 |
2 14
|
syl |
|
16 |
|
oveq1 |
|
17 |
16
|
eqeq1d |
|
18 |
|
fveq2 |
|
19 |
18
|
breq2d |
|
20 |
|
oveq2 |
|
21 |
|
neleq1 |
|
22 |
20 21
|
syl |
|
23 |
17 19 22
|
3anbi123d |
|
24 |
|
oveq1 |
|
25 |
24
|
eqeq1d |
|
26 |
|
fveq2 |
|
27 |
26
|
breq2d |
|
28 |
|
oveq2 |
|
29 |
|
neleq1 |
|
30 |
28 29
|
syl |
|
31 |
25 27 30
|
3anbi123d |
|
32 |
23 31
|
rmoi |
|
33 |
8 1 11 13 15 32
|
syl122anc |
|