Metamath Proof Explorer


Theorem eqsstrri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypotheses eqsstr3.1 B = A
eqsstr3.2 B C
Assertion eqsstrri A C

Proof

Step Hyp Ref Expression
1 eqsstr3.1 B = A
2 eqsstr3.2 B C
3 1 eqcomi A = B
4 3 2 eqsstri A C