Metamath Proof Explorer


Theorem eqsstrrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrid.1 B = A
eqsstrrid.2 φ B C
Assertion eqsstrrid φ A C

Proof

Step Hyp Ref Expression
1 eqsstrrid.1 B = A
2 eqsstrrid.2 φ B C
3 1 eqcomi A = B
4 3 2 eqsstrid φ A C