Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqtr2di
Next ⟩
eqtr4di
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqtr2di
Description:
An equality transitivity deduction.
(Contributed by
NM
, 29-Mar-1998)
Ref
Expression
Hypotheses
eqtr2di.1
⊢
φ
→
A
=
B
eqtr2di.2
⊢
B
=
C
Assertion
eqtr2di
⊢
φ
→
C
=
A
Proof
Step
Hyp
Ref
Expression
1
eqtr2di.1
⊢
φ
→
A
=
B
2
eqtr2di.2
⊢
B
=
C
3
1
2
eqtrdi
⊢
φ
→
A
=
C
4
3
eqcomd
⊢
φ
→
C
=
A