Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqtr2i
Next ⟩
eqtr3i
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqtr2i
Description:
An equality transitivity inference.
(Contributed by
NM
, 21-Feb-1995)
Ref
Expression
Hypotheses
eqtr2i.1
⊢
A
=
B
eqtr2i.2
⊢
B
=
C
Assertion
eqtr2i
⊢
C
=
A
Proof
Step
Hyp
Ref
Expression
1
eqtr2i.1
⊢
A
=
B
2
eqtr2i.2
⊢
B
=
C
3
1
2
eqtri
⊢
A
=
C
4
3
eqcomi
⊢
C
=
A