Metamath Proof Explorer


Theorem eqtr4d

Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995)

Ref Expression
Hypotheses eqtr4d.1 φ A = B
eqtr4d.2 φ C = B
Assertion eqtr4d φ A = C

Proof

Step Hyp Ref Expression
1 eqtr4d.1 φ A = B
2 eqtr4d.2 φ C = B
3 2 eqcomd φ B = C
4 1 3 eqtrd φ A = C