Step |
Hyp |
Ref |
Expression |
1 |
|
equivbnd.1 |
|
2 |
|
equivbnd.2 |
|
3 |
|
equivbnd.3 |
|
4 |
|
equivbnd.4 |
|
5 |
|
isbnd3b |
|
6 |
5
|
simprbi |
|
7 |
1 6
|
syl |
|
8 |
3
|
rpred |
|
9 |
|
remulcl |
|
10 |
8 9
|
sylan |
|
11 |
|
bndmet |
|
12 |
1 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
|
metcl |
|
15 |
14
|
3expb |
|
16 |
13 15
|
sylan |
|
17 |
|
simplr |
|
18 |
3
|
ad2antrr |
|
19 |
16 17 18
|
lemul2d |
|
20 |
4
|
adantlr |
|
21 |
2
|
adantr |
|
22 |
|
metcl |
|
23 |
22
|
3expb |
|
24 |
21 23
|
sylan |
|
25 |
8
|
ad2antrr |
|
26 |
25 16
|
remulcld |
|
27 |
10
|
adantr |
|
28 |
|
letr |
|
29 |
24 26 27 28
|
syl3anc |
|
30 |
20 29
|
mpand |
|
31 |
19 30
|
sylbid |
|
32 |
31
|
ralimdvva |
|
33 |
|
breq2 |
|
34 |
33
|
2ralbidv |
|
35 |
34
|
rspcev |
|
36 |
10 32 35
|
syl6an |
|
37 |
36
|
rexlimdva |
|
38 |
7 37
|
mpd |
|
39 |
|
isbnd3b |
|
40 |
2 38 39
|
sylanbrc |
|