| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equivbnd.1 |
|
| 2 |
|
equivbnd.2 |
|
| 3 |
|
equivbnd.3 |
|
| 4 |
|
equivbnd.4 |
|
| 5 |
|
isbnd3b |
|
| 6 |
5
|
simprbi |
|
| 7 |
1 6
|
syl |
|
| 8 |
3
|
rpred |
|
| 9 |
|
remulcl |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
bndmet |
|
| 12 |
1 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
metcl |
|
| 15 |
14
|
3expb |
|
| 16 |
13 15
|
sylan |
|
| 17 |
|
simplr |
|
| 18 |
3
|
ad2antrr |
|
| 19 |
16 17 18
|
lemul2d |
|
| 20 |
4
|
adantlr |
|
| 21 |
2
|
adantr |
|
| 22 |
|
metcl |
|
| 23 |
22
|
3expb |
|
| 24 |
21 23
|
sylan |
|
| 25 |
8
|
ad2antrr |
|
| 26 |
25 16
|
remulcld |
|
| 27 |
10
|
adantr |
|
| 28 |
|
letr |
|
| 29 |
24 26 27 28
|
syl3anc |
|
| 30 |
20 29
|
mpand |
|
| 31 |
19 30
|
sylbid |
|
| 32 |
31
|
ralimdvva |
|
| 33 |
|
breq2 |
|
| 34 |
33
|
2ralbidv |
|
| 35 |
34
|
rspcev |
|
| 36 |
10 32 35
|
syl6an |
|
| 37 |
36
|
rexlimdva |
|
| 38 |
7 37
|
mpd |
|
| 39 |
|
isbnd3b |
|
| 40 |
2 38 39
|
sylanbrc |
|