| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equivcau.1 |
|
| 2 |
|
equivcau.2 |
|
| 3 |
|
equivcau.3 |
|
| 4 |
|
equivcau.4 |
|
| 5 |
|
simpr |
|
| 6 |
3
|
ad2antrr |
|
| 7 |
5 6
|
rpdivcld |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
feq3d |
|
| 10 |
9
|
rexbidv |
|
| 11 |
10
|
rspcv |
|
| 12 |
7 11
|
syl |
|
| 13 |
|
simprr |
|
| 14 |
|
elpmi |
|
| 15 |
14
|
simpld |
|
| 16 |
15
|
ad3antlr |
|
| 17 |
|
resss |
|
| 18 |
|
dmss |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
|
uzid |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
|
fdm |
|
| 23 |
22
|
ad2antll |
|
| 24 |
21 23
|
eleqtrrd |
|
| 25 |
19 24
|
sselid |
|
| 26 |
16 25
|
ffvelcdmd |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
27 28 1 2 3 4
|
metss2lem |
|
| 30 |
29
|
expr |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
31
|
ad3antrrr |
|
| 33 |
|
simplr |
|
| 34 |
|
oveq1 |
|
| 35 |
|
oveq1 |
|
| 36 |
34 35
|
sseq12d |
|
| 37 |
36
|
imbi2d |
|
| 38 |
37
|
rspcv |
|
| 39 |
26 32 33 38
|
syl3c |
|
| 40 |
13 39
|
fssd |
|
| 41 |
40
|
expr |
|
| 42 |
41
|
reximdva |
|
| 43 |
12 42
|
syld |
|
| 44 |
43
|
ralrimdva |
|
| 45 |
44
|
ss2rabdv |
|
| 46 |
|
metxmet |
|
| 47 |
|
caufval |
|
| 48 |
2 46 47
|
3syl |
|
| 49 |
|
metxmet |
|
| 50 |
|
caufval |
|
| 51 |
1 49 50
|
3syl |
|
| 52 |
45 48 51
|
3sstr4d |
|