| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equivcau.1 |
|
| 2 |
|
equivcau.2 |
|
| 3 |
|
equivcau.3 |
|
| 4 |
|
equivcau.4 |
|
| 5 |
|
simpr |
|
| 6 |
3
|
ad2antrr |
|
| 7 |
5 6
|
rpdivcld |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
eleq1d |
|
| 10 |
9
|
rexbidv |
|
| 11 |
10
|
rspcv |
|
| 12 |
7 11
|
syl |
|
| 13 |
|
simpllr |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 15 1 2 3 4
|
metss2lem |
|
| 17 |
16
|
ancom2s |
|
| 18 |
17
|
adantlr |
|
| 19 |
18
|
anassrs |
|
| 20 |
1
|
ad3antrrr |
|
| 21 |
|
metxmet |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
simpr |
|
| 24 |
|
rpxr |
|
| 25 |
24
|
ad2antlr |
|
| 26 |
|
blssm |
|
| 27 |
22 23 25 26
|
syl3anc |
|
| 28 |
|
filss |
|
| 29 |
28
|
3exp2 |
|
| 30 |
29
|
com24 |
|
| 31 |
13 19 27 30
|
syl3c |
|
| 32 |
31
|
reximdva |
|
| 33 |
12 32
|
syld |
|
| 34 |
33
|
ralrimdva |
|
| 35 |
34
|
imdistanda |
|
| 36 |
|
metxmet |
|
| 37 |
|
iscfil3 |
|
| 38 |
2 36 37
|
3syl |
|
| 39 |
|
iscfil3 |
|
| 40 |
1 21 39
|
3syl |
|
| 41 |
35 38 40
|
3imtr4d |
|
| 42 |
41
|
ssrdv |
|