Metamath Proof Explorer


Theorem equivcfil

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy filters are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivcau.1 φ C Met X
equivcau.2 φ D Met X
equivcau.3 φ R +
equivcau.4 φ x X y X x C y R x D y
Assertion equivcfil φ CauFil D CauFil C

Proof

Step Hyp Ref Expression
1 equivcau.1 φ C Met X
2 equivcau.2 φ D Met X
3 equivcau.3 φ R +
4 equivcau.4 φ x X y X x C y R x D y
5 simpr φ f Fil X r + r +
6 3 ad2antrr φ f Fil X r + R +
7 5 6 rpdivcld φ f Fil X r + r R +
8 oveq2 s = r R x ball D s = x ball D r R
9 8 eleq1d s = r R x ball D s f x ball D r R f
10 9 rexbidv s = r R x X x ball D s f x X x ball D r R f
11 10 rspcv r R + s + x X x ball D s f x X x ball D r R f
12 7 11 syl φ f Fil X r + s + x X x ball D s f x X x ball D r R f
13 simpllr φ f Fil X r + x X f Fil X
14 eqid MetOpen C = MetOpen C
15 eqid MetOpen D = MetOpen D
16 14 15 1 2 3 4 metss2lem φ x X r + x ball D r R x ball C r
17 16 ancom2s φ r + x X x ball D r R x ball C r
18 17 adantlr φ f Fil X r + x X x ball D r R x ball C r
19 18 anassrs φ f Fil X r + x X x ball D r R x ball C r
20 1 ad3antrrr φ f Fil X r + x X C Met X
21 metxmet C Met X C ∞Met X
22 20 21 syl φ f Fil X r + x X C ∞Met X
23 simpr φ f Fil X r + x X x X
24 rpxr r + r *
25 24 ad2antlr φ f Fil X r + x X r *
26 blssm C ∞Met X x X r * x ball C r X
27 22 23 25 26 syl3anc φ f Fil X r + x X x ball C r X
28 filss f Fil X x ball D r R f x ball C r X x ball D r R x ball C r x ball C r f
29 28 3exp2 f Fil X x ball D r R f x ball C r X x ball D r R x ball C r x ball C r f
30 29 com24 f Fil X x ball D r R x ball C r x ball C r X x ball D r R f x ball C r f
31 13 19 27 30 syl3c φ f Fil X r + x X x ball D r R f x ball C r f
32 31 reximdva φ f Fil X r + x X x ball D r R f x X x ball C r f
33 12 32 syld φ f Fil X r + s + x X x ball D s f x X x ball C r f
34 33 ralrimdva φ f Fil X s + x X x ball D s f r + x X x ball C r f
35 34 imdistanda φ f Fil X s + x X x ball D s f f Fil X r + x X x ball C r f
36 metxmet D Met X D ∞Met X
37 iscfil3 D ∞Met X f CauFil D f Fil X s + x X x ball D s f
38 2 36 37 3syl φ f CauFil D f Fil X s + x X x ball D s f
39 iscfil3 C ∞Met X f CauFil C f Fil X r + x X x ball C r f
40 1 21 39 3syl φ f CauFil C f Fil X r + x X x ball C r f
41 35 38 40 3imtr4d φ f CauFil D f CauFil C
42 41 ssrdv φ CauFil D CauFil C