Metamath Proof Explorer


Theorem equivcmet

Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau , metss2 , this theorem does not have a one-directional form - it is possible for a metric C that is strongly finer than the complete metric D to be incomplete and vice versa. Consider D = the metric on RR induced by the usual homeomorphism from ( 0 , 1 ) against the usual metric C on RR and against the discrete metric E on RR . Then both C and E are complete but D is not, and C is strongly finer than D , which is strongly finer than E . (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Hypotheses equivcmet.1 φ C Met X
equivcmet.2 φ D Met X
equivcmet.3 φ R +
equivcmet.4 φ S +
equivcmet.5 φ x X y X x C y R x D y
equivcmet.6 φ x X y X x D y S x C y
Assertion equivcmet φ C CMet X D CMet X

Proof

Step Hyp Ref Expression
1 equivcmet.1 φ C Met X
2 equivcmet.2 φ D Met X
3 equivcmet.3 φ R +
4 equivcmet.4 φ S +
5 equivcmet.5 φ x X y X x C y R x D y
6 equivcmet.6 φ x X y X x D y S x C y
7 1 2 2thd φ C Met X D Met X
8 2 1 4 6 equivcfil φ CauFil C CauFil D
9 1 2 3 5 equivcfil φ CauFil D CauFil C
10 8 9 eqssd φ CauFil C = CauFil D
11 eqid MetOpen C = MetOpen C
12 eqid MetOpen D = MetOpen D
13 11 12 1 2 3 5 metss2 φ MetOpen C MetOpen D
14 12 11 2 1 4 6 metss2 φ MetOpen D MetOpen C
15 13 14 eqssd φ MetOpen C = MetOpen D
16 15 oveq1d φ MetOpen C fLim f = MetOpen D fLim f
17 16 neeq1d φ MetOpen C fLim f MetOpen D fLim f
18 10 17 raleqbidv φ f CauFil C MetOpen C fLim f f CauFil D MetOpen D fLim f
19 7 18 anbi12d φ C Met X f CauFil C MetOpen C fLim f D Met X f CauFil D MetOpen D fLim f
20 11 iscmet C CMet X C Met X f CauFil C MetOpen C fLim f
21 12 iscmet D CMet X D Met X f CauFil D MetOpen D fLim f
22 19 20 21 3bitr4g φ C CMet X D CMet X