Step |
Hyp |
Ref |
Expression |
1 |
|
equivtotbnd.1 |
|
2 |
|
equivtotbnd.2 |
|
3 |
|
equivtotbnd.3 |
|
4 |
|
equivtotbnd.4 |
|
5 |
|
simpr |
|
6 |
3
|
adantr |
|
7 |
5 6
|
rpdivcld |
|
8 |
1
|
adantr |
|
9 |
|
istotbnd3 |
|
10 |
9
|
simprbi |
|
11 |
8 10
|
syl |
|
12 |
|
oveq2 |
|
13 |
12
|
iuneq2d |
|
14 |
13
|
eqeq1d |
|
15 |
14
|
rexbidv |
|
16 |
15
|
rspcv |
|
17 |
7 11 16
|
sylc |
|
18 |
|
elfpw |
|
19 |
18
|
simplbi |
|
20 |
19
|
adantl |
|
21 |
20
|
sselda |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
9
|
simplbi |
|
25 |
1 24
|
syl |
|
26 |
22 23 2 25 3 4
|
metss2lem |
|
27 |
26
|
anass1rs |
|
28 |
27
|
adantlr |
|
29 |
21 28
|
syldan |
|
30 |
29
|
ralrimiva |
|
31 |
|
ss2iun |
|
32 |
30 31
|
syl |
|
33 |
|
sseq1 |
|
34 |
32 33
|
syl5ibcom |
|
35 |
2
|
ad3antrrr |
|
36 |
|
metxmet |
|
37 |
35 36
|
syl |
|
38 |
|
simpllr |
|
39 |
38
|
rpxrd |
|
40 |
|
blssm |
|
41 |
37 21 39 40
|
syl3anc |
|
42 |
41
|
ralrimiva |
|
43 |
|
iunss |
|
44 |
42 43
|
sylibr |
|
45 |
34 44
|
jctild |
|
46 |
|
eqss |
|
47 |
45 46
|
syl6ibr |
|
48 |
47
|
reximdva |
|
49 |
17 48
|
mpd |
|
50 |
49
|
ralrimiva |
|
51 |
|
istotbnd3 |
|
52 |
2 50 51
|
sylanbrc |
|