Metamath Proof Explorer


Theorem equs45f

Description: Two ways of expressing substitution when y is not free in ph . The implication "to the left" is equs4 and does not require the nonfreeness hypothesis. Theorem sbalex replaces the nonfreeness hypothesis with a disjoint variable condition and equs5 replaces it with a distinctor as antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 25-Apr-2008) (Revised by Mario Carneiro, 4-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypothesis equs45f.1 y φ
Assertion equs45f x x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 equs45f.1 y φ
2 1 nf5ri φ y φ
3 2 anim2i x = y φ x = y y φ
4 3 eximi x x = y φ x x = y y φ
5 equs5a x x = y y φ x x = y φ
6 4 5 syl x x = y φ x x = y φ
7 equs4 x x = y φ x x = y φ
8 6 7 impbii x x = y φ x x = y φ