Metamath Proof Explorer


Theorem equs5aALT

Description: Alternate proof of equs5a . Uses ax-12 but not ax-13 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equs5aALT x x = y y φ x x = y φ

Proof

Step Hyp Ref Expression
1 nfa1 x x x = y φ
2 ax-12 x = y y φ x x = y φ
3 2 imp x = y y φ x x = y φ
4 1 3 exlimi x x = y y φ x x = y φ