Metamath Proof Explorer


Theorem equs5eALT

Description: Alternate proof of equs5e . Uses ax-12 but not ax-13 . (Contributed by NM, 2-Feb-2007) (Proof shortened by Wolf Lammen, 15-Jan-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equs5eALT x x = y φ x x = y y φ

Proof

Step Hyp Ref Expression
1 nfa1 x x x = y y φ
2 hbe1 y φ y y φ
3 2 19.23bi φ y y φ
4 ax-12 x = y y y φ x x = y y φ
5 3 4 syl5 x = y φ x x = y y φ
6 5 imp x = y φ x x = y y φ
7 1 6 exlimi x x = y φ x x = y y φ