Metamath Proof Explorer


Theorem equsexALT

Description: Alternate proof of equsex . This proves the result directly, instead of as a corollary of equsal via equs4 . Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 is ax6e . This proof mimics that of equsal (in particular, note that pm5.32i , exbii , 19.41 , mpbiran correspond respectively to pm5.74i , albii , 19.23 , a1bi ). (Contributed by BJ, 20-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses equsal.1 x ψ
equsal.2 x = y φ ψ
Assertion equsexALT x x = y φ ψ

Proof

Step Hyp Ref Expression
1 equsal.1 x ψ
2 equsal.2 x = y φ ψ
3 2 pm5.32i x = y φ x = y ψ
4 3 exbii x x = y φ x x = y ψ
5 ax6e x x = y
6 1 19.41 x x = y ψ x x = y ψ
7 5 6 mpbiran x x = y ψ ψ
8 4 7 bitri x x = y φ ψ